Extending Recommendation Systems with Semantics and Context-Awareness: Pre-Filtering Algorithms

نویسندگان

  • Victor Codina
  • Luigi Ceccaroni
چکیده

During the last decade, several recommendation systems have been proposed that help people to tackle information overload of digital content by effectively presenting content adapted to user’s tastes and needs. However, these personalization technologies are far from perfect and much research is needed to improve the quality of recommendations and, particularly, user satisfaction. In this paper we analyze and extend two relatively recent approaches for improving the effectiveness of recommendation systems: context-aware recommenders, which mainly focus on incorporating contextual information to the recommendation process; and semantically-enhanced recommenders, which focus on incorporating domain semantics. Although these approaches are compatible, how to properly combine them to maximize their strengths is still an unexplored research issue. The objective of this work is to provide the basis for this research. Concretely, we propose and evaluate an improved content-based model that exploits semantics and contextual information in an integrated way.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Context-Aware Movie Recommendations: An Empirical Comparison of Pre-filtering, Post-filtering and Contextual Modeling Approaches

Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and under what circumstances. In this paper we address this issue by conducting an empirical compariso...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Differential Context Modeling in Collaborative Filtering

Context-aware recommender systems (CARS) try to adapt their recommendations to users’ specific contextual situations. In many recommender systems, particularly those based on collaborative filtering (CF), the additional contextual constraints may lead to increased sparsity in the user preference data, thus fewer matches between the current user context and previous situations. Our earlier work ...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011